Description
Prophet is a procedure for forecasting time series data. It is based on an additive model where non-linear trends are fit with yearly and weekly seasonality, plus holidays. It works best with daily periodicity data with at least one year of historical data. Prophet is robust to missing data, shifts in the trend, and large outliers.
Prophet is open source software released by Facebook's Core Data Science team. It is available for download on CRAN and PyPI.
Prophet alternatives and similar packages
Based on the "Machine Learning" category.
Alternatively, view Prophet alternatives based on common mentions on social networks and blogs.
-
xgboost
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow -
MindsDB
AGI's query engine - Platform for building AI that can learn and answer questions over federated data. -
PaddlePaddle
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署) -
NuPIC
DISCONTINUED. Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex. -
H2O
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc. -
Sacred
Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA. -
Clairvoyant
Software designed to identify and monitor social/historical cues for short term stock movement -
garak, LLM vulnerability scanner
DISCONTINUED. the LLM vulnerability scanner [Moved to: https://github.com/NVIDIA/garak] -
karateclub
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020) -
awesome-embedding-models
A curated list of awesome embedding models tutorials, projects and communities. -
Crab
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib). -
seqeval
A Python framework for sequence labeling evaluation(named-entity recognition, pos tagging, etc...) -
SciKit-Learn Laboratory
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments. -
Robocorp Action Server
Create 🐍 Python AI Actions and 🤖 Automations, and deploy & operate them anywhere -
Feature Forge
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API -
Data Flow Facilitator for Machine Learning (dffml)
DISCONTINUED. The easiest way to use Machine Learning. Mix and match underlying ML libraries and data set sources. Generate new datasets or modify existing ones with ease.
Nutrient – The #1 PDF SDK Library, trusted by 10K+ developers

* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of Prophet or a related project?
Popular Comparisons
README
Prophet: Automatic Forecasting Procedure
Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
Prophet is open source software released by Facebook's Core Data Science team. It is available for download on CRAN and PyPI.
Important links
- Homepage: https://facebook.github.io/prophet/
- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Contributing: https://facebook.github.io/prophet/docs/contributing.html
- Prophet R package: https://cran.r-project.org/package=prophet
- Prophet Python package: https://pypi.python.org/pypi/prophet/
- Release blogpost: https://research.fb.com/prophet-forecasting-at-scale/
- Prophet paper: Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45 (https://peerj.com/preprints/3190.pdf).
Installation in R
Prophet is a CRAN package so you can use install.packages
.
install.packages('prophet')
After installation, you can get started!
Experimental backend - cmdstanr
You can also choose an experimental alternative stan backend called cmdstanr
. Once you've installed prophet
,
follow these instructions to use cmdstanr
instead of rstan
as the backend:
# R
# We recommend running this in a fresh R session or restarting your current session
install.packages(c("cmdstanr", "posterior"), repos = c("https://mc-stan.org/r-packages/", getOption("repos")))
# If you haven't installed cmdstan before, run:
cmdstanr::install_cmdstan()
# Otherwise, you can point cmdstanr to your cmdstan path:
cmdstanr::set_cmdstan_path(path = <your existing cmdstan>)
# Set the R_STAN_BACKEND environment variable
Sys.setenv(R_STAN_BACKEND = "CMDSTANR")
Windows
On Windows, R requires a compiler so you'll need to follow the instructions provided by rstan
. The key step is installing Rtools before attempting to install the package.
If you have custom Stan compiler settings, install from source rather than the CRAN binary.
Installation in Python - PyPI release
Prophet is on PyPI, so you can use pip
to install it.
python -m pip install prophet
- From v0.6 onwards, Python 2 is no longer supported.
- As of v1.0, the package name on PyPI is "prophet"; prior to v1.0 it was "fbprophet".
- As of v1.1, the minimum supported Python version is 3.7.
After installation, you can get started!
Anaconda
Prophet can also be installed through conda-forge: conda install -c conda-forge prophet
.
Installation in Python - Development version
To get the latest code changes as they are merged, you can clone this repo and build from source manually. This is not guaranteed to be stable.
git clone https://github.com/facebook/prophet.git
cd prophet/python
python -m pip install -r requirements.txt
python setup.py develop
By default, Prophet will use a fixed version of cmdstan
(downloading and installing it if necessary) to compile the model executables. If this is undesired and you would like to use your own existing cmdstan
installation, you can set the environment variable PROPHET_REPACKAGE_CMDSTAN
to False
:
export PROPHET_REPACKAGE_CMDSTAN=False; python setup.py develop
Linux
Make sure compilers (gcc, g++, build-essential) and Python development tools (python-dev, python3-dev) are installed. In Red Hat systems, install the packages gcc64 and gcc64-c++. If you are using a VM, be aware that you will need at least 4GB of memory to install prophet, and at least 2GB of memory to use prophet.
Windows
Using cmdstanpy
with Windows requires a Unix-compatible C compiler such as mingw-gcc. If cmdstanpy is installed first, one can be installed via the cmdstanpy.install_cxx_toolchain
command.
Changelog
Version 1.1.1 (2022.09.08)
- (Python) Improved runtime (3-7x) of uncertainty predictions via vectorization.
- Bugfixes relating to Python package versions and R holiday objects.
Version 1.1 (2022.06.25)
- Replaced
pystan2
dependency withcmdstan
+cmdstanpy
. - Pre-packaged model binaries for Python package, uploaded binary distributions to PyPI.
- Improvements in the
stan
model code, cross-validation metric calculations, holidays.
Version 1.0 (2021.03.28)
- Python package name changed from fbprophet to prophet
- Fixed R Windows build issues to get latest version back on CRAN
- Improvements in serialization, holidays, and R timezone handling
- Plotting improvements
Version 0.7 (2020.09.05)
- Built-in json serialization
- Added "flat" growth option
- Bugfixes related to
holidays
andpandas
- Plotting improvements
- Improvements in cross validation, such as parallelization and directly specifying cutoffs
Version 0.6 (2020.03.03)
- Fix bugs related to upstream changes in
holidays
andpandas
packages. - Compile model during first use, not during install (to comply with CRAN policy)
cmdstanpy
backend now available in Python- Python 2 no longer supported
Version 0.5 (2019.05.14)
- Conditional seasonalities
- Improved cross validation estimates
- Plotly plot in Python
- Bugfixes
Version 0.4 (2018.12.18)
- Added holidays functionality
- Bugfixes
Version 0.3 (2018.06.01)
- Multiplicative seasonality
- Cross validation error metrics and visualizations
- Parameter to set range of potential changepoints
- Unified Stan model for both trend types
- Improved future trend uncertainty for sub-daily data
- Bugfixes
Version 0.2.1 (2017.11.08)
- Bugfixes
Version 0.2 (2017.09.02)
- Forecasting with sub-daily data
- Daily seasonality, and custom seasonalities
- Extra regressors
- Access to posterior predictive samples
- Cross-validation function
- Saturating minimums
- Bugfixes
Version 0.1.1 (2017.04.17)
- Bugfixes
- New options for detecting yearly and weekly seasonality (now the default)
Version 0.1 (2017.02.23)
- Initial release
License
Prophet is licensed under the [MIT license](LICENSE).
*Note that all licence references and agreements mentioned in the Prophet README section above
are relevant to that project's source code only.