Description
Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.
gensim alternatives and similar packages
Based on the "Machine Learning" category.
Alternatively, view gensim alternatives based on common mentions on social networks and blogs.
-
xgboost
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow -
PaddlePaddle
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署) -
CNTK
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit -
Prophet
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth. -
MindsDB
MindsDB is a Server for Artificial Intelligence Logic. Enabling developers to ship AI powered projects to production in a fast and scalable way. -
TFLearn
Deep learning library featuring a higher-level API for TensorFlow. -
NuPIC
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex. -
H2O
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc. -
Surprise
A Python scikit for building and analyzing recommender systems -
Pylearn2
Warning: This project does not have any current developer. See bellow. -
LightFM
A Python implementation of LightFM, a hybrid recommendation algorithm. -
skflow
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning -
Sacred
Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA. -
Clairvoyant
Software designed to identify and monitor social/historical cues for short term stock movement -
python-recsys
A python library for implementing a recommender system -
Metrics
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave -
karateclub
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020) -
awesome-embedding-models
A curated list of awesome embedding models tutorials, projects and communities. -
Crab
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib). -
seqeval
A Python framework for sequence labeling evaluation(named-entity recognition, pos tagging, etc...) -
adaptive
:chart_with_upwards_trend: Adaptive: parallel active learning of mathematical functions -
TrueSkill, the video game rating system
An implementation of the TrueSkill rating system for Python -
SciKit-Learn Laboratory
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments. -
Feature Forge
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API -
Data Flow Facilitator for Machine Learning (dffml)
The easiest way to use Machine Learning. Mix and match underlying ML libraries and data set sources. Generate new datasets or modify existing ones with ease. -
Xorbits
Scalable Python data science, in an API compatible & lightning fast way. -
bodywork
ML pipeline orchestration and model deployments on Kubernetes, made really easy. -
MLP Classifier
A handwritten multilayer perceptron classifer using numpy. -
OptaPy
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems. -
omega-ml
MLOps simplified. From ML Pipeline ⇨ Data Product without the hassle -
ChaiPy
A developer interface for creating advanced chatbots for the Chai app. -
neptune-contrib
This library is a location of the LegacyLogger for PyTorch Lightning. -
tfgraphviz
A visualization tool to show a TensorFlow's graph like TensorBoard
Access the most powerful time series database as a service
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of gensim or a related project?
Popular Comparisons
README
gensim – Topic Modelling in Python
<!-- The following image URLs are obfuscated = proxied and cached through Google because of Github's proxying issues. See: https://github.com/RaRe-Technologies/gensim/issues/2805 -->
Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community.
⚠️ Please sponsor Gensim to help sustain this open source project ❤️
Features
- All algorithms are memory-independent w.r.t. the corpus size (can process input larger than RAM, streamed, out-of-core),
- Intuitive interfaces
- easy to plug in your own input corpus/datastream (trivial streaming API)
- easy to extend with other Vector Space algorithms (trivial transformation API)
- Efficient multicore implementations of popular algorithms, such as online Latent Semantic Analysis (LSA/LSI/SVD), Latent Dirichlet Allocation (LDA), Random Projections (RP), Hierarchical Dirichlet Process (HDP) or word2vec deep learning.
- Distributed computing: can run Latent Semantic Analysis and Latent Dirichlet Allocation on a cluster of computers.
- Extensive documentation and Jupyter Notebook tutorials.
If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.
Installation
This software depends on NumPy and Scipy, two Python packages for scientific computing. You must have them installed prior to installing gensim.
It is also recommended you install a fast BLAS library before installing NumPy. This is optional, but using an optimized BLAS such as MKL, ATLAS or OpenBLAS is known to improve performance by as much as an order of magnitude. On OSX, NumPy picks up its vecLib BLAS automatically, so you don’t need to do anything special.
Install the latest version of gensim:
pip install --upgrade gensim
Or, if you have instead downloaded and unzipped the source tar.gz package:
python setup.py install
For alternative modes of installation, see the documentation.
Gensim is being continuously tested under all supported Python versions. Support for Python 2.7 was dropped in gensim 4.0.0 – install gensim 3.8.3 if you must use Python 2.7.
How come gensim is so fast and memory efficient? Isn’t it pure Python, and isn’t Python slow and greedy?
Many scientific algorithms can be expressed in terms of large matrix operations (see the BLAS note above). Gensim taps into these low-level BLAS libraries, by means of its dependency on NumPy. So while gensim-the-top-level-code is pure Python, it actually executes highly optimized Fortran/C under the hood, including multithreading (if your BLAS is so configured).
Memory-wise, gensim makes heavy use of Python’s built-in generators and iterators for streamed data processing. Memory efficiency was one of gensim’s design goals, and is a central feature of gensim, rather than something bolted on as an afterthought.
Documentation
Support
For commercial support, please see Gensim sponsorship.
Ask open-ended questions on the public Gensim Mailing List.
Raise bugs on Github but please make sure you follow the issue template. Issues that are not bugs or fail to provide the requested details will be closed without inspection.
Adopters
Company | Logo | Industry | Use of Gensim |
---|---|---|---|
RARE Technologies | [rare](docs/src/readme_images/rare.png) | ML & NLP consulting | Creators of Gensim – this is us! |
Amazon | [amazon](docs/src/readme_images/amazon.png) | Retail | Document similarity. |
National Institutes of Health | [nih](docs/src/readme_images/nih.png) | Health | Processing grants and publications with word2vec. |
Cisco Security | [cisco](docs/src/readme_images/cisco.png) | Security | Large-scale fraud detection. |
Mindseye | [mindseye](docs/src/readme_images/mindseye.png) | Legal | Similarities in legal documents. |
Channel 4 | [channel4](docs/src/readme_images/channel4.png) | Media | Recommendation engine. |
Talentpair | [talent-pair](docs/src/readme_images/talent-pair.png) | HR | Candidate matching in high-touch recruiting. |
Juju | [juju](docs/src/readme_images/juju.png) | HR | Provide non-obvious related job suggestions. |
Tailwind | [tailwind](docs/src/readme_images/tailwind.png) | Media | Post interesting and relevant content to Pinterest. |
Issuu | [issuu](docs/src/readme_images/issuu.png) | Media | Gensim's LDA module lies at the very core of the analysis we perform on each uploaded publication to figure out what it's all about. |
Search Metrics | [search-metrics](docs/src/readme_images/search-metrics.png) | Content Marketing | Gensim word2vec used for entity disambiguation in Search Engine Optimisation. |
12K Research | [12k](docs/src/readme_images/12k.png) | Media | Document similarity analysis on media articles. |
Stillwater Supercomputing | [stillwater](docs/src/readme_images/stillwater.png) | Hardware | Document comprehension and association with word2vec. |
SiteGround | [siteground](docs/src/readme_images/siteground.png) | Web hosting | An ensemble search engine which uses different embeddings models and similarities, including word2vec, WMD, and LDA. |
Capital One | [capitalone](docs/src/readme_images/capitalone.png) | Finance | Topic modeling for customer complaints exploration. |
Citing gensim
When citing gensim in academic papers and theses, please use this BibTeX entry:
@inproceedings{rehurek_lrec,
title = {{Software Framework for Topic Modelling with Large Corpora}},
author = {Radim {\v R}eh{\r u}{\v r}ek and Petr Sojka},
booktitle = {{Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks}},
pages = {45--50},
year = 2010,
month = May,
day = 22,
publisher = {ELRA},
address = {Valletta, Malta},
note={\url{http://is.muni.cz/publication/884893/en}},
language={English}
}