Description
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill.
openskill.py alternatives and similar packages
Based on the "Machine Learning" category.
Alternatively, view openskill.py alternatives based on common mentions on social networks and blogs.
-
tensorflow
An Open Source Machine Learning Framework for Everyone -
xgboost
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow -
gym
A toolkit for developing and comparing reinforcement learning algorithms. -
CNTK
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit -
PaddlePaddle
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署) -
Prophet
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth. -
MindsDB
MindsDB is a Server for Artificial Intelligence Logic. Enabling developers to ship AI powered projects to production in a fast and scalable way. -
TFLearn
Deep learning library featuring a higher-level API for TensorFlow. -
H2O
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc. -
NuPIC
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex. -
Pyro.ai
Deep universal probabilistic programming with Python and PyTorch -
Surprise
A Python scikit for building and analyzing recommender systems -
Pylearn2
Warning: This project does not have any current developer. See bellow. -
LightFM
A Python implementation of LightFM, a hybrid recommendation algorithm. -
Sacred
Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA. -
skflow
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning -
Clairvoyant
Software designed to identify and monitor social/historical cues for short term stock movement -
python-recsys
A python library for implementing a recommender system -
Metrics
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave -
karateclub
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020) -
awesome-embedding-models
A curated list of awesome embedding models tutorials, projects and communities. -
Crab
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib). -
adaptive
:chart_with_upwards_trend: Adaptive: parallel active learning of mathematical functions -
seqeval
A Python framework for sequence labeling evaluation(named-entity recognition, pos tagging, etc...) -
TrueSkill, the video game rating system
An implementation of the TrueSkill rating system for Python -
rwa
Machine Learning on Sequential Data Using a Recurrent Weighted Average -
SciKit-Learn Laboratory
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments. -
Feature Forge
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API -
Data Flow Facilitator for Machine Learning (dffml)
The easiest way to use Machine Learning. Mix and match underlying ML libraries and data set sources. Generate new datasets or modify existing ones with ease. -
Xorbits
Scalable Python data science, in an API compatible & lightning fast way. -
brew
Multiple Classifier Systems and Ensemble Learning Library in Python. -
bodywork
ML pipeline orchestration and model deployments on Kubernetes, made really easy. -
MLP Classifier
A handwritten multilayer perceptron classifer using numpy. -
OptaPy
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems. -
vowpal_porpoise
lightweight python wrapper for vowpal wabbit -
omega-ml
MLOps simplified. From ML Pipeline ⇨ Data Product without the hassle -
ChaiPy
A developer interface for creating advanced chatbots for the Chai app. -
tfgraphviz
A visualization tool to show a TensorFlow's graph like TensorBoard -
neptune-contrib
This library is a location of the LegacyLogger for PyTorch Lightning.
Access the most powerful time series database as a service
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of openskill.py or a related project?
README
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill
This is a port of the amazing openskill.js package.
Installation
pip install openskill
Usage
>>> from openskill import Rating, rate
>>> a1 = Rating()
>>> a1
Rating(mu=25, sigma=8.333333333333334)
>>> a2 = Rating(mu=32.444, sigma=5.123)
>>> a2
Rating(mu=32.444, sigma=5.123)
>>> b1 = Rating(43.381, 2.421)
>>> b1
Rating(mu=43.381, sigma=2.421)
>>> b2 = Rating(mu=25.188, sigma=6.211)
>>> b2
Rating(mu=25.188, sigma=6.211)
If a1
and a2
are on a team, and wins against a team of b1
and b2
, send this into rate:
>>> [[x1, x2], [y1, y2]] = rate([[a1, a2], [b1, b2]])
>>> x1, x2, y1, y2
(Rating(mu=28.669648436582808, sigma=8.071520788025197), Rating(mu=33.83086971107981, sigma=5.062772998705765), Rating(mu=43.071274808241974, sigma=2.4166900452721256), Rating(mu=23.149503312339064, sigma=6.1378606973362135))
You can also create Rating
objects by importing create_rating
:
>>> from openskill import create_rating
>>> x1 = [28.669648436582808, 8.071520788025197]
>>> x1 = create_rating(x1)
>>> x1
Rating(mu=28.669648436582808, sigma=8.071520788025197)
Ranks
When displaying a rating, or sorting a list of ratings, you can use ordinal
:
>>> from openskill import ordinal
>>> ordinal([43.07, 2.42])
35.81
By default, this returns mu - 3 * sigma
, showing a rating for which there's a 99.7% likelihood the player's true rating is higher, so with early games, a player's ordinal rating will usually go up and could go up even if that player loses.
Artificial Ranks
If your teams are listed in one order but your ranking is in a different order, for convenience you can specify a ranks option, such as:
>>> a1 = b1 = c1 = d1 = Rating()
>>> result = [[a2], [b2], [c2], [d2]] = rate([[a1], [b1], [c1], [d1]], rank=[4, 1, 3, 2])
>>> result
[[Rating(mu=20.96265504062538, sigma=8.083731307186588)], [Rating(mu=27.795084971874736, sigma=8.263160757613477)], [Rating(mu=24.68943500312503, sigma=8.083731307186588)], [Rating(mu=26.552824984374855, sigma=8.179213704945203)]]
It's assumed that the lower ranks are better (wins), while higher ranks are worse (losses). You can provide a score instead, where lower is worse and higher is better. These can just be raw scores from the game, if you want.
Ties should have either equivalent rank or score.
>>> a1 = b1 = c1 = d1 = Rating()
>>> result = [[a2], [b2], [c2], [d2]] = rate([[a1], [b1], [c1], [d1]], score=[37, 19, 37, 42])
>>> result
[[Rating(mu=24.68943500312503, sigma=8.179213704945203)], [Rating(mu=22.826045021875203, sigma=8.179213704945203)], [Rating(mu=24.68943500312503, sigma=8.179213704945203)], [Rating(mu=27.795084971874736, sigma=8.263160757613477)]]
Predicting Winners
You can compare two or more teams to get the probabilities of each team winning.
>>> from openskill import predict_win
>>> a1 = Rating()
>>> a2 = Rating(mu=33.564, sigma=1.123)
>>> predictions = predict_win(teams=[[a1], [a2]])
>>> predictions
[0.45110901512761536, 0.5488909848723846]
>>> sum(predictions)
1.0
Predicting Draws
You can compare two or more teams to get the probabilities of the match drawing.
>>> from openskill import predict_draw
>>> a1 = Rating()
>>> a2 = Rating(mu=33.564, sigma=1.123)
>>> prediction = predict_draw(teams=[[a1], [a2]])
>>> prediction
0.09025541153402594
Choosing Models
The default model is PlackettLuce
. You can import alternate models from openskill.models
like so:
>>> from openskill.models import BradleyTerryFull
>>> a1 = b1 = c1 = d1 = Rating()
>>> rate([[a1], [b1], [c1], [d1]], rank=[4, 1, 3, 2], model=BradleyTerryFull)
[[Rating(mu=17.09430584957905, sigma=7.5012190693964005)], [Rating(mu=32.90569415042095, sigma=7.5012190693964005)], [Rating(mu=22.36476861652635, sigma=7.5012190693964005)], [Rating(mu=27.63523138347365, sigma=7.5012190693964005)]]
Available Models
BradleyTerryFull
: Full Pairing for Bradley-TerryBradleyTerryPart
: Partial Pairing for Bradley-TerryPlackettLuce
: Generalized Bradley-TerryThurstoneMostellerFull
: Full Pairing for Thurstone-MostellerThurstoneMostellerPart
: Partial Pairing for Thurstone-Mosteller
Which Model Do I Want?
- Bradley-Terry rating models follow a logistic distribution over a player's skill, similar to Glicko.
- Thurstone-Mosteller rating models follow a gaussian distribution, similar to TrueSkill. Gaussian CDF/PDF functions differ in implementation from system to system (they're all just chebyshev approximations anyway). The accuracy of this model isn't usually as great either, but tuning this with an alternative gamma function can improve the accuracy if you really want to get into it.
- Full pairing should have more accurate ratings over partial pairing, however in high k games (like a 100+ person marathon race), Bradley-Terry and Thurstone-Mosteller models need to do a calculation of joint probability which involves is a k-1 dimensional integration, which is computationally expensive. Use partial pairing in this case, where players only change based on their neighbors.
- Plackett-Luce (default) is a generalized Bradley-Terry model for k ≥ 3 teams. It scales best.
Advanced Usage
You can learn more about how to configure this library to suit your custom needs in the project documentation.
Implementations in other Languages
*Note that all licence references and agreements mentioned in the openskill.py README section above
are relevant to that project's source code only.