All Versions
22
Latest Version
Avg Release Cycle
39 days
Latest Release
736 days ago

Changelog History
Page 3

  • v1.16.6 Changes

    December 29, 2019

    ๐Ÿš€ NumPy 1.16.6 Release Notes

    ๐Ÿš€ The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release,
    ๐Ÿ‘€ and also backports several enhancements from master that seem
    ๐Ÿš€ appropriate for a release series that is the last to support Python 2.7.
    The wheels on PyPI are linked with OpenBLAS v0.3.7, which should fix
    errors on Skylake series cpus.

    ๐Ÿš€ Downstream developers building this release should use Cython >= 0.29.2
    ๐Ÿ‘ and, if using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python
    ๐Ÿ”– versions are 2.7 and 3.5-3.7.

    Highlights

    • โšก๏ธ The np.testing.utils functions have been updated from 1.19.0-dev0.
      ๐Ÿ“š This improves the function documentation and error messages as well
      extending the assert_array_compare function to additional types.

    ๐Ÿ†• New functions

    ๐Ÿ‘ Allow matmul (@) to work with object arrays.

    ๐Ÿ‘€ This is an enhancement that was added in NumPy 1.17 and seems reasonable
    ๐Ÿš€ to include in the LTS 1.16 release series.

    Compatibility notes

    ๐Ÿ›  Fix regression in matmul (@) for boolean types

    Booleans were being treated as integers rather than booleans, which was
    a regression from previous behavior.

    ๐Ÿ‘Œ Improvements

    Array comparison assertions include maximum differences

    โœ… Error messages from array comparison tests such as
    โœ… testing.assert_allclose now include "max absolute difference" and
    "max relative difference," in addition to the previous "mismatch"
    โšก๏ธ percentage. This information makes it easier to update absolute and
    relative error tolerances.

    Contributors

    ๐Ÿš€ A total of 10 people contributed to this release.

    • CakeWithSteak
    • Charles Harris
    • Chris Burr
    • Eric Wieser
    • Fernando Saravia
    • Lars Grueter
    • Matti Picus
    • Maxwell Aladago
    • Qiming Sun
    • Warren Weckesser

    ๐Ÿ”€ Pull requests merged

    ๐Ÿš€ A total of 14 pull requests were merged for this release.

    • #14211: BUG: Fix
      uint-overflow if padding with linear_ramp and negative...
    • #14275: BUG: fixing to
      ๐Ÿ‘ allow unpickling of PY3 pickles from PY2
    • #14340: BUG: Fix
      misuse of .names and .fields in various places (backport...
    • โœ… #14423: BUG: test, fix
      regression in converting to ctypes.
    • ๐Ÿ›  #14434: BUG: Fixed
      maximum relative error reporting in assert_allclose
    • #14509: BUG: Fix
      regression in boolean matmul.
    • #14686: BUG: properly
      define PyArray_DescrCheck
    • #14853: BLD: add 'apt
      โšก๏ธ update' to shippable
    • #14854: BUG: Fix
      _ctypes class circular reference. (#13808)
    • #14856: BUG: Fix
      ๐Ÿง [np.einsum]{.title-ref} errors on Power9 Linux and z/Linux
    • #14863: BLD: Prevent
      -flto from optimising long double representation...
    • #14864: BUG: lib: Fix
      histogram problem with signed integer arrays.
    • #15172: ENH: Backport
      ๐Ÿ‘Œ improvements to testing functions.
    • #15191: REL: Prepare
      ๐Ÿš€ for 1.16.6 release.

    Checksums

    MD5

    4e224331023d95e98074d629b79cd4af numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl
    d3a48c10422909a5610b42380ed8ddc6 numpy-1.16.6-cp27-cp27m-manylinux1_i686.whl
    6896018676021f6cff25abb30d9da143 numpy-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
    c961575405015b018a497e8f90db5e38 numpy-1.16.6-cp27-cp27m-win32.whl
    8fa39acea08658ca355005c07e15f06f numpy-1.16.6-cp27-cp27m-win_amd64.whl
    8802bee0140fd50aecddab0141d0eb82 numpy-1.16.6-cp27-cp27mu-manylinux1_i686.whl
    2f9761f243249d33867f86c10c549dfa numpy-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
    171a699d84b6ec8ac699627d606890e0 numpy-1.16.6-cp35-cp35m-macosx_10_9_intel.whl
    7185860b022aa72cd9abb112b2d2b6cf numpy-1.16.6-cp35-cp35m-manylinux1_i686.whl
    33f35e1b39f572ca98e697b7054fffd1 numpy-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
    2ec010ba75c0ac5602e1dbf7fe01ddbf numpy-1.16.6-cp35-cp35m-win32.whl
    88c6c5e1f531e32f65f9f9437045f6f5 numpy-1.16.6-cp35-cp35m-win_amd64.whl
    751f8ea2353e73bb3440f241ebad6c5d numpy-1.16.6-cp36-cp36m-macosx_10_9_x86_64.whl
    819af6ec8c90e8209471ecbc6fc47b95 numpy-1.16.6-cp36-cp36m-manylinux1_i686.whl
    56ab65e9d3bac5f502507d198634e675 numpy-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
    88d4ed4565d31a1978f4bf013f4ffd2e numpy-1.16.6-cp36-cp36m-win32.whl
    167ac7f60d82bd32feb60e675a2c3b01 numpy-1.16.6-cp36-cp36m-win_amd64.whl
    2e47bb698842b7289bb34951edf3be3d numpy-1.16.6-cp37-cp37m-macosx_10_9_x86_64.whl
    169eb83d7f0a566207048cc282720ff8 numpy-1.16.6-cp37-cp37m-manylinux1_i686.whl
    454ac4d3e09931bfb58cc01b679f4f5f numpy-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
    192593ce2df33b60eab445b31285ad96 numpy-1.16.6-cp37-cp37m-win32.whl
    de3b92f1133613e1bd96d788ba9d4307 numpy-1.16.6-cp37-cp37m-win_amd64.whl
    5e958c603605f3168b7b29f421f64cdd numpy-1.16.6.tar.gz
    3dc21c84a295fe77eadf8f872685a7de numpy-1.16.6.zip
    

    SHA256

    08bf4f66f190822f4642e036accde8da810b87fffc0b9409e7a00d9e54760099 numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl
    d759ca1b76ac6f6b6159fb74984126035feb1dee9f68b4b961889b6dc090f33a numpy-1.16.6-cp27-cp27m-manylinux1_i686.whl
    d3c5377c6122de876e695937ef41ffee5d2831154c5e4856481b93406cdfeecb numpy-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
    345b1748e6b0d4773a518868c783b16fdc33a22683bdb863484cd29fe8d206e6 numpy-1.16.6-cp27-cp27m-win32.whl
    7a5a1f49a643aa1ab3e0579da0a48b8a48ea4369eb63c5065459d0a37f430237 numpy-1.16.6-cp27-cp27m-win_amd64.whl
    817eed5a6ec2fc9c1a0ee3fbf9a441c66b6766383580513ccbdf3121acc0b4fb numpy-1.16.6-cp27-cp27mu-manylinux1_i686.whl
    1680c8d5086a88d293dfd1a10b6429a09140cacee878034fa2308472ec835db4 numpy-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
    a4383edb1b8caa989c3541a37ef204916322c503b8eeacc7ee8f4ba24cac97b8 numpy-1.16.6-cp35-cp35m-macosx_10_9_intel.whl
    9bb690692f3101583b0b99f3be362742e4f8ebe6c7934fa36cd8ca2b567a0bcc numpy-1.16.6-cp35-cp35m-manylinux1_i686.whl
    b9e334568ca1bf56598eddfac6db6a75bcf1c91aa90d598648f21e45207daeae numpy-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
    55cae40d2024c56e7b79fb070106cb4289dcc6b55c62dba1d89a6944448c6a53 numpy-1.16.6-cp35-cp35m-win32.whl
    a1ffc9c770ccc2be9284310a3726c918b26ca19b34c0079e7a41aba950ab175f numpy-1.16.6-cp35-cp35m-win_amd64.whl
    3f423b06bf67cd1dbf72e13e9b53a9ca71972e5abf712ee6cb5d8cbb178fff02 numpy-1.16.6-cp36-cp36m-macosx_10_9_x86_64.whl
    34e6bb44e3d9a663f903b8c297ede865b4dff039aa43cc9a0b249e02c27f1396 numpy-1.16.6-cp36-cp36m-manylinux1_i686.whl
    60c56922c9d759d664078fbef94132377ef1498ab27dd3d0cc7a21b346e68c06 numpy-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
    23cad5e5858dfb73c0e5bce03fe78e5e5908c22263156c58d4afdbb240683c6c numpy-1.16.6-cp36-cp36m-win32.whl
    77399828d96cca386bfba453025c34f22569909d90332b961d3d4341cdb46a84 numpy-1.16.6-cp36-cp36m-win_amd64.whl
    97ddfa7688295d460ee48a4d76337e9fdd2506d9d1d0eee7f0348b42b430da4c numpy-1.16.6-cp37-cp37m-macosx_10_9_x86_64.whl
    390f6e14a8d73591f086680464aa101a9be9187d0c633f48c98b429b31b712c2 numpy-1.16.6-cp37-cp37m-manylinux1_i686.whl
    a1772dc227e3e415eeaa646d25690dc854bddc3d626e454c7c27acba060cb900 numpy-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
    c9fb4fcfcdcaccfe2c4e1f9e0133ed59df5df2aa3655f3d391887e892b0a784c numpy-1.16.6-cp37-cp37m-win32.whl
    6b1853364775edb85ceb0f7f8214d9e993d4d1d9bd3310eae80529ea14ba2ba6 numpy-1.16.6-cp37-cp37m-win_amd64.whl
    61562ddac78765969959500b0da9c6f9ba7d77eeb12ec3927afae5303df08777 numpy-1.16.6.tar.gz
    e5cf3fdf13401885e8eea8170624ec96225e2174eb0c611c6f26dd33b489e3ff numpy-1.16.6.zip
    
  • v1.16.5 Changes

    August 28, 2019

    ๐Ÿš€ NumPy 1.16.5 Release Notes

    ๐Ÿš€ The NumPy 1.16.5 release fixes bugs reported against the 1.16.4 release, and
    ๐Ÿ‘€ also backports several enhancements from master that seem appropriate for a
    ๐Ÿš€ release series that is the last to support Python 2.7. The wheels on PyPI are
    ๐Ÿ”— linked with OpenBLAS v0.3.7-dev, which should fix errors on Skylake series
    cpus.

    ๐Ÿš€ Downstream developers building this release should use Cython >= 0.29.2 and, if
    ๐Ÿ‘ using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7 and
    3.5-3.7.

    Contributors

    ๐Ÿš€ A total of 18 people contributed to this release. People with a "+" by their
    names contributed a patch for the first time.

    • Alexander Shadchin
    • Allan Haldane
    • Bruce Merry +
    • Charles Harris
    • Colin Snyder +
    • Dan Allan +
    • Emile +
    • Eric Wieser
    • Grey Baker +
    • Maksim Shabunin +
    • Marten van Kerkwijk
    • Matti Picus
    • Peter Andreas Entschev +
    • Ralf Gommers
    • Richard Harris +
    • Sebastian Berg
    • Sergei Lebedev +
    • Stephan Hoyer

    ๐Ÿ”€ Pull requests merged

    ๐Ÿš€ A total of 23 pull requests were merged for this release.

    • #13742: ENH: Add project URLs to setup.py
    • โœ… #13823: TEST, ENH: fix tests and ctypes code for PyPy
    • #13845: BUG: use npy_intp instead of int for indexing array
    • ๐Ÿ—„ #13867: TST: Ignore DeprecationWarning during nose imports
    • ๐Ÿ†“ #13905: BUG: Fix use-after-free in boolean indexing
    • โž• #13933: MAINT/BUG/DOC: Fix errors in _add_newdocs
    • #13984: BUG: fix byte order reversal for datetime64[ns]
    • #13994: MAINT,BUG: Use nbytes to also catch empty descr during allocation
    • #14042: BUG: np.array cleared errors occured in PyMemoryView_FromObject
    • ๐Ÿ›  #14043: BUG: Fixes for Undefined Behavior Sanitizer (UBSan) errors.
    • #14044: BUG: ensure that casting to/from structured is properly checked.
    • #14045: MAINT: fix histogram*d dispatchers
    • #14046: BUG: further fixup to histogram2d dispatcher.
    • #14052: BUG: Replace contextlib.suppress for Python 2.7
    • #14056: BUG: fix compilation of 3rd party modules with Py_LIMITED_API...
    • #14057: BUG: Fix memory leak in dtype from dict contructor
    • #14058: DOC: Document array_function at a higher level.
    • #14084: BUG, DOC: add new recfunctions to __all__
    • ๐Ÿšš #14162: BUG: Remove stray print that causes a SystemError on python 3.7
    • โœ… #14297: TST: Pin pytest version to 5.0.1.
    • ๐Ÿง #14322: ENH: Enable huge pages in all Linux builds
    • #14346: BUG: fix behavior of structured_to_unstructured on non-trivial...
    • ๐Ÿš€ #14382: REL: Prepare for the NumPy 1.16.5 release.

    Checksums

    MD5

    cf7ff97464eb044cb49618be5fe29aee numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
    6fbf51644f8722fa90276c04fe3d031f numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
    df4ab8600495131e44ad1b173f6cc9fc numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
    2f6fd50a02da9d56e3d950a6b738337e numpy-1.16.5-cp27-cp27m-win32.whl
    d36b67522ee102b7865a83b26a1d97aa numpy-1.16.5-cp27-cp27m-win_amd64.whl
    5b4f83c092257f6c98bedd44505e7b6d numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
    d6fd33607099abdea62752cf303a1763 numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
    fa48e45bd3e5dbac923296b039e70706 numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
    85a7db0c597037cced7ab82c0f0cdcc8 numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
    401e053e98faada4bc8cdcc9b04d619f numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
    2912ba9109dca60115dba59606cac27b numpy-1.16.5-cp35-cp35m-win32.whl
    756b7ff320ef821f2cd279c5df7c9f46 numpy-1.16.5-cp35-cp35m-win_amd64.whl
    2ae22b506a07575a4bc6a91d2db25df5 numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
    12cbf61ed2abec3f77cfa3a46b7e4bdc numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
    ab726a4244e9e070cde814d8415cff4c numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
    752e461d193b7049e25c7e20f7d4808a numpy-1.16.5-cp36-cp36m-win32.whl
    2712434cdfb27a301c49cf97eee656d5 numpy-1.16.5-cp36-cp36m-win_amd64.whl
    394fee86faa235dea6d2bb6270961266 numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
    0713da36acc884897f76bc8117ca7a42 numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
    7856a32b3b2d93d018d2ba5dce941ffa numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
    33b7fd0d727c9f09d61879afde8096f6 numpy-1.16.5-cp37-cp37m-win32.whl
    5287ce297cd8093463bb29bef42db103 numpy-1.16.5-cp37-cp37m-win_amd64.whl
    f9c22f53f17e81b25af8e53b026a9831 numpy-1.16.5.tar.gz
    adaad8c166cf0344af3ca1a664dd4a38 numpy-1.16.5.zip
    

    SHA256

    37fdd3bb05caaaacac58015cfa38e38b006ee9cef1eaacdb70bb68c16ac7db1d numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
    f42e21d8db16315bc30b437bff63d6b143befb067b8cd396fa3ef17f1c21e1a0 numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
    4208b225ae049641a7a99ab92e84ce9d642ded8250d2b6c9fd61a7fa8c072561 numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
    4d790e2a37aa3350667d8bb8acc919010c7e46234c3d615738564ddc6d22026f numpy-1.16.5-cp27-cp27m-win32.whl
    1594aec94e4896e0688f4f405481fda50fb70547000ae71f2e894299a088a661 numpy-1.16.5-cp27-cp27m-win_amd64.whl
    2c5a556272c67566e8f4607d1c78ad98e954fa6c32802002a4a0b029ad8dd759 numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
    3a96e59f61c7a8f8838d0f4d19daeba551c5f07c5cdd5c81e8e9d4089ade0042 numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
    612297115bade249a118616c065597ff2e5e1f47ed220d7ba71f3e6c6ebcd814 numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
    dbc9e9a6a5e0c4f57498855d4e30ef8b599c0ce13fdf9d64299197508d67d9e8 numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
    fada0492dd35412cd96e0578677e9a4bdae8f102ef2b631301fcf19066b57119 numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
    ada1a1cd68b9874fa480bd287438f92bd7ce88ca0dd6e8d56c70f2b3dab97314 numpy-1.16.5-cp35-cp35m-win32.whl
    27aa457590268cb059c47daa8c55f48c610ce81da8a062ec117f74efa9124ec9 numpy-1.16.5-cp35-cp35m-win_amd64.whl
    03b28330253904d410c3c82d66329f29645eb54a7345cb7dd7a1529d61fa603f numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
    911d91ffc6688db0454d69318584415f7dfb0fc1b8ac9b549234e39495684230 numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
    ceb353e3ae840ce76256935b18c17236ca808509f231f41d5173d7b2680d5e77 numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
    e6ce7c0051ed5443f8343da2a14580aa438822ae6526900332c4564f371d2aaf numpy-1.16.5-cp36-cp36m-win32.whl
    9a2b950bca9faca0145491ae9fd214c432f2b1e36783399bc2c3732e7bcc94f4 numpy-1.16.5-cp36-cp36m-win_amd64.whl
    00836128feaf9a7c7fedeea05ad593e7965f523d23fe3ffbf20cfffd88e9f2b1 numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
    3d6a354bb1a1ce2cabd47e0bdcf25364322fb55a29efb59f76944d7ee546d8b6 numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
    f7fb27c0562206787011cf299c03f663c604b58a35a9c2b5218ba6485a17b145 numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
    46469e7fcb689036e72ce61c3d432ed35eb4c71b5119e894845b434b0fae5813 numpy-1.16.5-cp37-cp37m-win32.whl
    fb207362394567343d84c0462ec3ba203a21c78be9a0fdbb94982e76859ec37e numpy-1.16.5-cp37-cp37m-win_amd64.whl
    2b63c414fb43a4f0cb69b29b7e9d48275af0dbb5b1ffd2f2de99c4df9967e151 numpy-1.16.5.tar.gz
    8bb452d94e964b312205b0de1238dd7209da452343653ab214b5d681780e7a0c numpy-1.16.5.zip