Popularity
6.2
Stable
Activity
9.4
Growing
1,713
89
228

Code Quality Rank: L3
Programming language: Python
License: GNU General Public License v3.0 or later
Latest version: v0.11.0

textacy alternatives and similar packages

Based on the "Natural Language Processing" category.
Alternatively, view textacy alternatives based on common mentions on social networks and blogs.

  • Jieba

    结巴中文分词
  • funNLP

    中英文敏感词、语言检测、中外手机/电话归属地/运营商查询、名字推断性别、手机号抽取、身份证抽取、邮箱抽取、中日文人名库、中文缩写库、拆字词典、词汇情感值、停用词、反动词表、暴恐词表、繁简体转换、英文模拟中文发音、汪峰歌词生成器、职业名称词库、同义词库、反义词库、否定词库、汽车品牌词库、汽车零件词库、连续英文切割、各种中文词向量、公司名字大全、古诗词库、IT词库、财经词库、成语词库、地名词库、历史名人词库、诗词词库、医学词库、饮食词库、法律词库、汽车词库、动物词库、中文聊天语料、中文谣言数据、百度中文问答数据集、句子相似度匹配算法集合、bert资源、文本生成&摘要相关工具、cocoNLP信息抽取工具、国内电话号码正则匹配、清华大学XLORE:中英文跨语言百科知识图谱、清华大学人工智能技术系列报告、自然语言生成、NLU太难了系列、自动对联数据及机器人、用户名黑名单列表、罪名法务名词及分类模型、微信公众号语料、cs224n深度学习自然语言处理课程、中文手写汉字识别、中文自然语言处理 语料/数据集、变量命名神器、分词语料库+代码、任务型对话英文数据集、ASR 语音数据集 + 基于深度学习的中文语音识别系统、笑声检测器、Microsoft多语言数字/单位/如日期时间识别包、中华新华字典数据库及api(包括常用歇后语、成语、词语和汉字)、文档图谱自动生成、SpaCy 中文模型、Common Voice语音识别数据集新版、神经网络关系抽取、基于bert的命名实体识别、关键词(Keyphrase)抽取包pke、基于医疗领域知识图谱的问答系统、基于依存句法与语义角色标注的事件三元组抽取、依存句法分析4万句高质量标注数据、cnocr:用来做中文OCR的Python3包、中文人物关系知识图谱项目、中文nlp竞赛项目及代码汇总、中文字符数据、speech-aligner: 从“人声语音”及其“语言文本”产生音素级别时间对齐标注的工具、AmpliGraph: 知识图谱表示学习(Python)库:知识图谱概念链接预测、Scattertext 文本可视化(python)、语言/知识表示工具:BERT & ERNIE、中文对比英文自然语言处理NLP的区别综述、Synonyms中文近义词工具包、HarvestText领域自适应文本挖掘工具(新词发现-情感分析-实体链接等)、word2word:(Py
  • Find & Fix Code Quality and Code Security issues in your Python codebase today! Discover More →
    Sponsored www.sonarlint.org
  • spaCy

    💫 Industrial-strength Natural Language Processing (NLP) in Python
  • NLTK

    NLTK Source
  • Pattern

    Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
  • TextBlob

    Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.
  • SnowNLP

    Python library for processing Chinese text
  • pytext

    A natural language modeling framework based on PyTorch
  • Stanza

    Official Stanford NLP Python Library for Many Human Languages
  • pkuseg-python

    pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation
  • polyglot

    Multilingual text (NLP) processing toolkit
  • langid.py

    Stand-alone language identification system
  • PyTorch-NLP

    Basic Utilities for PyTorch Natural Language Processing (NLP)
  • quepy

    A python framework to transform natural language questions to queries in a database query language.
  • IEPY

    Information Extraction in Python
  • TextGrocery

    A simple short-text classification tool based on LibLinear
  • Lineflow

    :zap:A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python
  • stanfordnlp

    [Deprecated] This library has been renamed to "Stanza". Latest development at: https://github.com/stanfordnlp/stanza
  • pntl

    Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (NER), semantic role labeling (SRL) and syntactic parsing (PSG) with skip-gram all in Python and still more features will be added. The website give is for downlarding Senna tool

Do you think we are missing an alternative of textacy or a related project?

Add another 'Natural Language Processing' Package

README

textacy: NLP, before and after spaCy

textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the high-performance spaCy library. With the fundamentals --- tokenization, part-of-speech tagging, dependency parsing, etc. --- delegated to another library, textacy focuses primarily on the tasks that come before and follow after.

build status current release version pypi version conda version

features

  • Access and extend spaCy's core functionality for working with one or many documents through convenient methods and custom extensions
  • Load prepared datasets with both text content and metadata, from Congressional speeches to historical literature to Reddit comments
  • Clean, normalize, and explore raw text before processing it with spaCy
  • Extract structured information from processed documents, including n-grams, entities, acronyms, keyterms, and SVO triples
  • Compare strings and sequences using a variety of similarity metrics
  • Tokenize and vectorize documents then train, interpret, and visualize topic models
  • Compute text readability statistics, including Flesch-Kincaid grade level, SMOG index, and multi-lingual Flesch Reading Ease

... and much more!

links

maintainer

Howdy, y'all. 👋